Role of nitric oxide and mitochondria in control of firefly flash.
نویسندگان
چکیده
In light-producing cells (photocytes) of the firefly light organ, mitochondria are clustered in the cell periphery, positioned between the tracheolar air supply and the oxygen-requiring bioluminescent reactants which are sequestered in more centrally-localized peroxisomes. This relative positioning suggests that mitochondria could control oxygen availability for the light reaction. We hypothesized that active cellular respiration would make the interior regions of the photocytes relatively hypoxic, and that the "on" signal for production of bioluminescence might depend on inhibition of mitochondrial oxygen consumption, which would allow delivered oxygen to pass through the peripheral mitochondrial zone to reach peroxisomes deep in the cell interior. We published recently that exogenous NO induces bioluminescence in the intact firefly; that NO mediates octopamine-induced bioluminescence in the dissected lantern, and that nitric oxide synthase is abundant in cells of the tracheolar system of the light organ. Additional experiments showed that nitric oxide gas (NO) inhibits respiration in isolated lantern mitochondria. Inhibition is reversed by bright light, and this inhibition is relieved when the light is turned off. Altogether, the results support the idea that NO triggers light production by reversible inhibition of mitochondrial respiration in lantern cells, and probably in tracheolar cells as well. The data also suggest that the light of bioluminescence itself relieves NO inhibition thus contributing to rapid on/off switching. While other mechanisms may be in play, NO production that is directly related to neural input appears to have a key role in the oxygen gating that controls flash communication signals.
منابع مشابه
Role of Nitric Oxide and Mitochondria in Control of Firefly Flash1
SYNOPSIS. In light-producing cells (photocytes) of the firefly light organ, mitochondria are clustered in the cell periphery, positioned between the tracheolar air supply and the oxygen-requiring bioluminescent reactants which are sequestered in more centrally-localized peroxisomes. This relative positioning suggests that mitochondria could control oxygen availability for the light reaction. We...
متن کاملNitric oxide and the control of firefly flashing.
Bioluminescent flashing is essential for firefly reproduction, yet the specific molecular mechanisms that control light production are not well understood. We report that light production by fireflies can be stimulated by nitric oxide (NO) gas in the presence of oxygen and that NO scavengers block bioluminescence induced by the neurotransmitter octopamine. NO synthase is robustly expressed in t...
متن کاملExpression of the nos gene and Firefly Flashing: A Test of the Nitric-Oxide-Mediated Flash Control Model
Fireflies (Coleoptera: Lampyridae) emit various types of light that differ among species and populations of the same species. Their lights are assumed to be biological properties that play important ecological and evolutionary roles. Some species in the Lampyridae emit periodic luminescence, the patterns of which are characterized by species-specific intervals. In previous work, it was predicte...
متن کاملNitric oxide signalling: insect brains and photocytes.
The success of insects arises partly from extraordinary biochemical and physiological specializations. For example, most species lack glutathione peroxidase, glutathione reductase and respiratory-gas transport proteins and thus allow oxygen to diffuse directly into cells. To counter the increased potential for oxidative damage, insect tissues rely on the indirect protection of the thioredoxin r...
متن کاملFireflies at one hundred plus: a new look at flash control.
The mysterious process by which fireflies can control their flashing has inspired over a century of careful observation but has remained elusive. Many studies have implicated oxygen as the controlling element in the photochemical reaction, and the discovery of nitric oxide synthetase (NOS) in the lantern has suggested that nitric oxide (NO) may control oxygen access to the light-emitting photoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integrative and comparative biology
دوره 44 3 شماره
صفحات -
تاریخ انتشار 2004